Abstract

We characterize the class of dominant-strategy incentive-compatible (or strategy-proof) random social choice functions in the standard multi-dimensional voting model where voter preferences over the various dimensions (or components) are lexicographically separable. We show that these social choice functions (which we call generalized random dictatorships) are induced by probability distributions on voter sequences of length equal to the number of components. They induce a fixed probability distribution on the product set of voter peaks. The marginal probability distribution over every component is a random dictatorship. Our results generalize the classic random dictatorship result in Gibbard (1977) and the decomposability results for strategy-proof deterministic social choice functions for multi-dimensional models with separable preferences obtained in LeBreton and Sen (1999).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.