Abstract
In this paper we determine completely the structure of linear codes over $\mathbb Z/N\mathbb Z$ of constant weight. Namely, we determine exactly which modules underlie linear codes of constant weight, and we describe the coordinate functionals involved. The weight functions considered are: Hamming weight, Lee weight, two forms of Euclidean weight, and pre-homogeneous weights. We prove a general uniqueness theorem for virtual linear codes of constant weight. Existence is settled on a case by case basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.