Abstract
The bilinear form with associated identity matrix is used in coding theory to define the dual code of a linear code, also it endows linear codes with a metric space structure. This metric structure was studied for generalized toric codes and a characteristic decomposition was obtained, which led to several applications as the construction of stabilizer quantum codes and LCD codes. In this work, we use the study of bilinear forms over a finite field to give a decomposition of an arbitrary linear code similar to the one obtained for generalized toric codes. Such a decomposition, called the geometric decomposition of a linear code, can be obtained in a constructive way; it allows us to express easily the dual code of a linear code and provides a method to construct stabilizer quantum codes, LCD codes and in some cases, a method to estimate their minimum distance. The proofs for characteristic 2 are different, but they are developed in parallel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.