Abstract

Abstract The crystallographic nature of the damage created in GaN implanted by rare earth ions at 300 keV and room temperature has been investigated by transmission electron microscopy versus the fluence, from 7×10 13 to 2×10 16 at/cm 2 , using Er, Eu or Tm ions. The density of point defect clusters was seen to increase with the fluence. From about 3×10 15 at/cm 2 , a highly disordered ‘nanocrystalline layer’ (NL) appears on the GaN surface. Its structure exhibits a mixture of voids and misoriented nanocrystallites. Basal stacking faults (BSFs) of I 1 , E and I 2 types have been noticed from the lowest fluence, they are I 1 in the majority. Their density increases and saturates when the NL is observed. Many prismatic stacking faults (PSFs) with Drum atomic configuration have been identified. The I 1 BSFs are shown to propagate easily through GaN by folding from basal to prismatic planes thanks to the PSFs. When implanting through a 10 nm AlN cap, the NL threshold goes up to about 3×10 16 at/cm 2 . The AlN cap plays a protective role against the dissociation of the GaN up to the highest fluences. The flat surface after implantation and the absence of SFs in the AlN cap indicate its high resistance to the damage formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call