Abstract

AbstractPrevious studies have documented a nocturnal maximum in thunderstorm frequency during the summer across the central United States. Forecast skill for these systems remains relatively low and the explanation for this nocturnal maximum is still an area of active debate. This study utilized the WRF-ARW Model to simulate a nocturnal mesoscale convective system that occurred over the southern Great Plains on 3–4 June 2013. A low-level jet transported a narrow corridor of air above the nocturnal boundary layer with convective instability that exceeded what was observed in the daytime boundary layer. The storm was elevated and associated with bores that assisted in the maintenance of the system. Three-dimensional variations in the system’s structure were found along the cold pool, which were examined using convective system dynamics and wave theory. Shallow lifting occurred on the southern flank of the storm. Conversely, the southeastern flank had deep lifting, with favorable integrated vertical shear over the layer of maximum CAPE. The bore assisted in transporting high-CAPE air toward its LFC, and the additional lifting by the density current allowed for deep convection to occur. The bore was not coupled to the convective system and it slowly pulled away, while the convection remained in phase with the density current. These results provide a possible explanation for how convection is maintained at night in the presence of a low-level jet and a stable boundary layer, and emphasize the importance of the three-dimensionality of these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.