Abstract

The morphology, electronic structure, and optical properties of self-assembled silicon nanostructures grown on the surface of Highly Oriented Pyrolytic Graphite (HOPG) by molecular beam epitaxy were studied by ultra high vacuum (UHV) scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in situ, and by Raman spectroscopy ex situ. At coverages of less than 1 monolayer (ML), the formation of monolayered silicon nanoislands with an atomic structure similar to that of graphene was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.