Abstract

The lithium-doped phases Gd1.7Li0.3Zr2O6.7 and Gd2Zr1.7Li0.3O6.55 with a pyrochlore structure were prepared by the modified Pechini method using citric acid and glycerol. Monitoring of the lithium content by using a nuclear microanalysis showed that a significant loss of lithium occurred after heat treatment above 1200 °C. Dense ceramics with a stoichiometric lithium content can be prepared by a low temperature microwave sintering (1100 °C). The introduction of lithium in the Gd-sublattice was accompanied by a decrease in the unit cell parameter (a = 10.5208 (1) Å vs 10.5346 (2) Å for Gd2Zr2O7) and during doping at the Zr-sites with lithium, the cell parameter increased (10.5720 (1) Å). The doping in both cases led to an increase in the free cell volume. The impedance spectroscopy results showed that the bulk conductivity can be enhanced by the Li+-doping at the Gd3+-site by almost an order of magnitude. The sample Gd2Zr1.7Li0.3O6.55 had a conductivity lower than that of Gd1.7Li0.3Zr2O6.7 due to the possible trapping of oxygen vacancies by a high-charged acceptor defect LiZrʹʹʹ. The conductivity−pO2 measurements showed that the Li-containing phase was a pure oxide-ion conductor at T < 800 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call