Abstract

In nanocrystalline materials, structural discontinuities at grain boundaries (GBs) and the segregation of point defects to these GBs play a key role in defining the structural stability of a material, as well as its macroscopic electrical/mechanical properties. In this study, the segregation of oxygen vacancies near the Σ3 (112) [1¯10] tilt GB in SrTiO3 is explored using density functional theory. We find that oxygen vacancies segregate toward the GB, preferring to reside within the next nearest-neighbor layer. This oxygen vacancy segregation is found to be crucial for stabilizing this tilt GB. Furthermore, we find that the migration barriers of oxygen vacancies diffusing toward the first nearest-neighbor layer of the GB are low, while those away from this layer are very high. The segregation and trapping of the oxygen vacancies in the first nearest-neighbor layer of GBs are attributed to the large local distortions, which can now accommodate the preferred sixfold coordination of Ti. These results suggest that the electronic, transport, and capacitive properties of SrTiO3 can be engineered through the control of GB structure and grain size or layer thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call