Abstract

Interfacial contact resistance between gas diffusion layers (GDLs) and bipolar plates (BPs) has a substantial effect on the performance loss of polymer electrolyte fuel cells (PEFCs). Particularly during the final manufacturing process of a fuel cell stack, an externally applied clamping load determines the extent of electrical contact between those two solid components. In order to have the least electrical contact loss, it is highly necessary to keep all PEFC components close each other without causing structural failure of fuel cell stacks. In the present work, we investigated the effect of the clamping pressure on extrinsic properties such as porosity and permeability, which is closely related to mass transfer of reactants. Also, the variance of interfacial electrical resistance was analyzed as a function of the stack clamping pressure or the compressed GDL thickness, which reflects the external clamping load. Then with these experimentally obtained material properties of GDL, computational efforts were made to account for the effect of the clamping pressure on the fuel cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.