Abstract
In this study, a three-dimensional single channel is numerically modeled to simulate the polymer electrolyte fuel cell (PEFC) with a homogeneous and inhomogeneous gas diffusion layer (GDL). The influence of interfacial contact resistance (ICR) between GDL and current collector ribs (GDL|CC) is also studied. In the present study, GDL is considered as a single component (homogeneous) in one case and inhomogeneous with varying electrical and flow properties to illustrate the inhomogeneity in another case. The inhomogeneity in GDL is primarily caused by localized deformation due to non-uniform contact pressure during fuel cell assemblies. The consideration of ICR is observed to have a significant effect on both the ohmic and mass transport regions of the polarization curve. Inhomogeneous GDL with ICR, considered close to a practical scenario, shows a ∼7% drop in performance evaluation at 0.3V. The study reveals increased consumption of reactants at higher current loads when ICR is assumed negligible. This study examines the effects of homogeneous GDL, inhomogeneous GDL, and the impact of ICR on the distributions of reactant concentration, water concentration, temperature, current density, and polarization curve in PEFC. This study presents the practical aspects of PEFC considering inhomogeneous GDL electrical and flow properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have