Abstract
Methylglyoxal and glyoxal are generated from the oxidation of carbohydrates and lipids, and like D-glucose have been shown to nonenzymatically react with proteins to form advanced glycation end products (AGEs). AGEs can occur both in vitro and in vivo, and these compounds have been shown to exacerbate many of the long-term complications of diabetes. Earlier studies in our laboratory reported D-glucose, D-galactose, and D/L-glyceraldehyde formed AGEs with nucleosides. The objective of this study was to focus on purines and pyrimidines and to analyze these DNA nucleoside derived AGE adducts with glyoxal or methylglyoxal using a combination of analytical techniques. Studies using UV and fluorescence spectroscopy along with mass spectrometry provided for a thorough analysis of the nucleoside AGEs and demonstrated that methylglyoxal and glyoxal reacted with 2'-deoxyguanosine via the classic Amadori pathway, and did not react appreciably with 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxycytidine. Additional findings revealed that methylglyoxal was more reactive than glyoxal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.