Abstract

We have investigated the structural, elastic, electronic, vibration and thermodynamic properties of GdMg alloy using the methods of density functional theory within the generalized gradient approximation (GGA) for the exchange-correlation functional. We have presented the results on the basic physical parameters, such as the lattice constant, bulk modulus, pressure derivative of bulk modulus with and without spin-polarization (SP), second-order elastic constants, Zener anisotropy factor, Poisson's ratio, Young's modulus, and isotropic shear modulus. The thermodynamic properties of the considered compound are obtained through the quasi-harmonic Debye model. In order to obtain further information, we have also studied the pressure and temperature-dependent behavior of the volume, bulk modulus, thermal expansion coefficient, heat capacity, and Debye temperature in a wide temperature range of 0–1200 K. We have also calculated phonon frequencies and one-phonon density of states for B2 structure of GdMg compound. The temperature-dependent behavior of heat capacity and entropy obtained from phonon density of states for GdMg compound in B2 phase is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.