Abstract

Abstract The structural, elastic and thermodynamic characteristics of CeGa2 compound in the AlB2 (space group: P6/mmm) and the omega trigonal (space group: P-3m1) type structures are investigated using the methods of density functional theory within the generalized gradient approximation (GGA). The thermodynamic properties of the considered structures are obtained through the quasi-harmonic Debye model. The results on the basic physical parameters, such as the lattice constant, the bulk modulus, the pressure derivative of bulk modulus, the phase-transition pressure (P t) from P6/mmm to P-3m1 structure, the second-order elastic constants, Zener anisotropy factor, Poisson’s ratio, Young’s modulus, and the isotropic shear modulus are presented. In order to gain further information, the pressure and temperature-dependent behavior of the volume, the bulk modulus, the thermal expansion coefficient, the heat capacity, the entropy, Debye temperature and Grüneisen parameter are also evaluated over a pressure range of 0–6 GPa and a wide temperature range of 0–1800 K. The obtained results are in agreement with the available experimental and the other theoretical values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.