Abstract
The structural and electronic properties of BN and BP compounds and BN x P 1− x alloys have been investigated by full potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). The total energies and electronic band structures of these compounds have been calculated for different approximations of exchange–correlation energy. The comparative study has showed that the Perdew–Wang-generalized gradient approximation (PW-GGA) is the best one to produce the measured structural quantities of the compounds, such as the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. The electronic quantities of the compounds, such as the width of the valance band and energy gaps at high symmetry points have been found to be in good agreement with the corresponding measured ones when the compounds were defined by the lattice constants of PW-GGA scheme. The PW-GGA approach was also applied on BN x P 1− x alloys for obtaining the variation of the equilibrium lattice constants, bulk moduli, and minimum energy gaps as a function of the nitrogen concentration within the range of 0 < x < 1 . It is found that these variations having large bowing parameters exclude the Vegard’s linear rule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.