Abstract
This paper focuses on explicit approximations for nonlinear stochastic delay differential equations (SDDEs). Under less restrictive conditions, the truncated Euler-Maruyama (TEM) schemes for SDDEs are proposed, which numerical solutions are bounded in the q th moment for q ≥ 2 and converge to the exact solutions strongly in any finite interval. The 1/2 order convergence rate is yielded. Furthermore, the long-time asymptotic behaviors of numerical solutions, such as stability in mean square and $\mathbb {P}-1$ , are examined. Several numerical experiments are carried out to illustrate our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.