Abstract

A perturbation solution for stress-strain fields (including modes I, II, III) at crack tip in axially cracked cylindrical shells is given. The analysis, using 10th-order differential equations which take the transverse shear deformations into account, involves perturbation in a curvature parameter λ2, (λ2=[12(1-v2)]1/2a2/Rh). Stress intensity factors for finite size cylindrical shells under bending and internal pressure loading are evaluated. A good accuracy can be obtained without using fine meshes in a region near the crack tip. Besides, the influence of the finite size and the shearing stiffness on bulging factors, which are commonly used in engineering, are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.