Abstract

The crack tip stress fields for plate bending and membrane loading problems are reviewed and the four stress intensity factors that determine these fields are defined. These four stress intensity factors arise from use of Kirchhoff plate theory to account for the bending loads and two dimensional plane stress elasticity to account for the membrane loads. The energy release rate is related to the stress intensity factors and to the stress resultants of plate theory. Virtual crack extension, nodal release and modified crack closure integral methods are discussed for computing components of the energy release rate from finite element analyses of cracked plates. Sample computations of stress intensity factors for single and mixed mode cases are presented for a crack in an infinite plate. Sample computations of stress intensity factors for a double edge notched tension-torsion test specimen are given as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call