Abstract

The data obtained for the heights of the relief and the external gravitational field of Venus for spherical harmonics with degree and order up to 18 allow one to start theoretical analysis of the crust-mantle boundary (Venusian Moho) and stress state of the planetary interior. We suppose that Venusian convection is confined by floating massive crust. Apparently the convection in the upper mantle of Venus is separated from that one in the lower mantle and its lateral scale must be essentially smaller than on Earth. So, the convection is reflected to a larger degree of the gravitational field of the planet than for Earth. The spherical harmonic expansion of the topography for Venus correlates with corresponding expansion of the non-equilibrium part of the gravitational potential for n = 3–18. At the same time the relief of Venus is significantly compensated. It is reasonable to suppose that the gravity field for these harmonics is due to crustal thickness variations and, probably, to variations of crustal density. Thus, in the proposed scheme the Moho's relief causes the partial isostatic compensation of the topography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.