Abstract

Abstract A new system that resolves the stratosphere was implemented for operational medium-range weather forecasts at the Canadian Meteorological Centre. The model lid was raised from 10 to 0.1 hPa, parameterization schemes for nonorographic gravity wave tendencies and methane oxidation were introduced, and a new radiation scheme was implemented. Because of the higher lid height of 0.1 hPa, new measurements between 10 and 0.1 hPa were also added. This new high-top system resulted not only in dramatically improved forecasts of the stratosphere, but also in large improvements in medium-range tropospheric forecast skill. Pairs of assimilation experiments reveal that most of the stratospheric and tropospheric forecast improvement is obtained without the extra observations in the upper stratosphere. However, these observations further improve forecasts in the winter hemisphere but not in the summer hemisphere. Pairs of forecast experiments were run in which initial conditions were the same for each experiment but the forecast model differed. The large improvements in stratospheric forecast skill are found to be due to the higher lid height of the new model. The new radiation scheme helps to improve tropospheric forecasts. However, the degree of improvement seen in tropospheric forecast skill could not be entirely explained with these purely forecast experiments. It is hypothesized that the cycling of a better model and assimilation provide improved initial conditions, which result in improved forecasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.