Abstract

It has been an enduring and heated debate whether the yield strength of metallic glasses (MGs) is size dependent or size independent. In this work, we first develop a micromechanical model by taking into account the stochasticity for shear band initiation in microcompression. Our modeling is subsequently verified through the extensive in-situ and ex-situ microcompression experiments. Through the efforts of combined experiments and modeling, we show a size-controlled stochastic transition from the size dependent to the size independent yield strength in the MG micropillars. Such a stochastic transition is featured with a strong fluctuation in the measured yield strengths when the micropillar size is near an intrinsic length scale which varies with the chemical composition of MGs. In contrast, such a size-controlled transition appear deterministic with little data scattering in tension. At the fundamental level, our results unfold a size dependent shear band initiation process in MGs, which may be applicable to other amorphous materials of technological importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.