Abstract

Machine-learning function representations such as neural networks have proven to be excellent constructs for constitutive modeling due to their flexibility to represent highly nonlinear data and their ability to incorporate constitutive constraints, which also allows them to generalize well to unseen data. In this work, we extend a polyconvex hyperelastic neural network framework to (isotropic) thermo-hyperelasticity by specifying the thermodynamic and material theoretic requirements for an expansion of the Helmholtz free energy expressed in terms of deformation invariants and temperature. Different formulations which a priori ensure polyconvexity with respect to deformation and concavity with respect to temperature are proposed and discussed. The physics-augmented neural networks are furthermore calibrated with a recently proposed sparsification algorithm that not only aims to fit the training data but also penalizes the number of active parameters, which prevents overfitting in the low data regime and promotes generalization. The performance of the proposed framework is demonstrated on synthetic data, which illustrate the expected thermomechanical phenomena, and existing temperature-dependent uniaxial tension and tension-torsion experimental datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.