Abstract

Convex regularization techniques are now widespread tools for solving inverse problems in a variety of different frameworks. In some cases, the functions to be reconstructed are naturally viewed as realizations from random processes; an important question is thus whether such regularization techniques preserve the properties of the underlying probability measures. We focus here on a case which has produced a very lively debate in the cosmological literature, namely Gaussian and isotropic spherical random fields, and we prove that neither Gaussianity nor isotropy are conserved in general under convex regularization based on ℓ1 minimization over a Fourier dictionary, such as the orthonormal system of spherical harmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.