Abstract
We study the weak convergence (in the high-frequency limit) of the parameter estimators of power spectrum coefficients associated with Gaussian, spherical and isotropic random fields. In particular, we introduce a Whittle-type approximate maximum likelihood estimator and we investigate its asympotic weak consistency and Gaussianity, in both parametric and semiparametric cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.