Abstract
In this paper we consider the stochastic primitive equation for geophysical flows subject to transport noise and turbulent pressure. Admitting very rough noise terms, the global existence and uniqueness of solutions to this stochastic partial differential equation are proven using stochastic maximal L2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^2$$\\end{document}-regularity, the theory of critical spaces for stochastic evolution equations, and global a priori bounds. Compared to other results in this direction, we do not need any smallness assumption on the transport noise which acts directly on the velocity field and we also allow rougher noise terms. The adaptation to Stratonovich type noise and, more generally, to variable viscosity and/or conductivity are discussed as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastics and Partial Differential Equations: Analysis and Computations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.