Abstract

Stochastic difference equations and a stochastic partial differential equation (SPDE) are simultaneously derived for the time-dependent neutron angular density in a general three-dimensional medium where the neutron angular density is a function of position, direction, energy and time. Special cases of the equations are given, such as transport in one-dimensional plane geometry with isotropic scattering and transport in a homogeneous medium. The stochastic equations are derived from basic principles, i.e. from the changes that occur in a small time interval. Stochastic difference equations of the neutron angular density are constructed, taking into account the inherent randomness in scatters, absorptions and source neutrons. As the time interval decreases, the stochastic difference equations lead to a system of Itô stochastic differential equations. As the energy, direction, and position intervals decrease, an SPDE is derived for the neutron angular density. Comparisons between numerical solutions of the stochastic difference equations and independently formulated Monte Carlo calculations support the accuracy of the derivations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.