Abstract
The Generalized Bin Packing Problem (GBPP) is a recently introduced packing problem where, given a set of bins characterized by volume and cost and a set of items characterized by volume and profit (which also depends on bins), we want to select a subset of items to be loaded into a subset of bins which maximizes the total net profit, while satisfying the volume and bin availability constraints. The total net profit is given by the difference between the total profit of the loaded items and the total cost of the used bins. In this paper, we consider the stochastic version of the GBPP (S-GBPP), where the item profits are random variables to take into account the profit oscillations due to the handling operations for bin loading. The probability distribution of these random variables is assumed to be unknown. By using the asymptotic theory of extreme values a deterministic approximation for the S-GBPP is derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.