Abstract

In this article we mainly extend a newly introduced deterministic model for the COVID-19 disease to a stochastic setting. More precisely, we incorporated randomness in some coefficients by assuming that they follow a prescribed stochastic dynamics. In this way, the model variables are now represented by stochastic process, that can be simulated by appropriately solving the system of stochastic differential equations. Thus, the model becomes more complete and flexible than the deterministic analogous, as it incorporates additional uncertainties which are present in more realistic situations. In particular, confidence intervals for the main variables and worst case scenarios can be computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.