Abstract

Abstract Observations of column water vapor in the tropics show significant variations in space and time, indicating that it is strongly influenced by the passage of weather systems. It is hypothesized that many of the influencing systems are moisture modes, systems whose thermodynamics are governed by moisture. On the basis of four objective criteria, results suggest that all oceanic convectively coupled tropical depression (TD)-like waves and equatorial Rossby waves are moisture modes. These modes occur where the horizontal column moisture gradient is steep and not where the column water vapor content is high. Despite geographical basic-state differences, the moisture modes are driven by the same mechanisms across all basins. The moist static energy (MSE) anomalies propagate westward by horizontal moisture advection by the trade winds. Their growth is determined by the advection of background moisture by the anomalous meridional winds and anomalous radiative heating. Horizontal maps of column moisture and 850-hPa streamfunction show that convection is partially collocated with the low-level circulation in nearly all the waves. Both this structure and the process of growth indicate that the moisture modes grow from moisture–vortex instability. Last, space–time spectral analysis reveals that column moisture and low-level meridional winds are coherent and exhibit a phasing that is consistent with a poleward latent energy transport. Collectively, these results indicate that moisture modes are ubiquitous across the tropics. That they occur in regions of steep horizontal moisture gradients and grow from moisture–vortex instability suggests that these gradients are inherently unstable and are subject to continuous stirring. Significance Statement Over the tropics, column water vapor has been found to be highly correlated with precipitation, especially in slowly evolving systems. These observations and theory support the hypothesis that moisture modes exist, a type of precipitating weather system that does not exist in dry theory. In this study, we found that all oceanic tropical depression (TD)-like waves and equatorial Rossby waves are moisture modes. These systems exist in regions where moisture varies greatly in space, and they grow by transporting air from the humid areas of the tropics toward their low pressure center. These results indicate that the climatological-mean distribution of moisture in the tropics is unstable and is subject to stirring by moisture modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call