Abstract

The sterol regulatory element binding proteins (SREBPs) transcription factors family, which regulate the expression of genes involved in cellular lipid metabolism and homeostasis, have recently been implicated in various physiological and pathophysiological processes such as immune regulation and inflammation in vertebrates. Consistent with other invertebrates, we identified a single SREBP ortholog in Penaeus vannamei (designated PvSREBP) with transcripts ubiquitously expressed in tissues and induced by lipopolysaccharide (LPS), Vibrio parahaemolyticus and Streptococcus iniae. In vivo RNA interference (RNAi) of PvSREBP attenuated the expression of several fatty acid metabolism-related genes (i.e., cyclooxygenase (PvCOX), lipoxygenase (PvLOX), fatty acid binding protein (PvFABP) and fatty acid synthase (PvFASN)), which consequently decreased the levels of total polyunsaturated fatty acids (ΣPUFAs). In addition, PvSREBP silencing decreased transcript levels of several immune-related genes such as hemocyanin (PvHMC) and trypsin (PvTrypsin), as well as genes encoding for heat-shock proteins (i.e., PvHSP60, PvHSP70 and PvHSP90). Moreover, in silico analysis revealed the presence of SREBP binding motifs on the promoters of most of the dysregulated genes, while shrimp depleted of PvSREBP were more susceptible to V. parahaemolyticus infection. Collectively, we demonstrated the involvement of shrimp SREBP in fatty acids metabolism and immune response, and propose that PvSREBP and PvHMC modulate each other through a feedback mechanism to establish homeostasis. The current study is the first to show the dual role of SREBP in fatty acid metabolism and immune response in invertebrates and crustaceans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.