Abstract

Stereochemical analysis has long been recognised as a powerful tool for elucidating the mechanisms of chemical and enzyme-catalysed reactions. Although much is known about the stereochemical course of reactions at saturated carbon, phosphate and thiophosphate esters whose ligands to phosphorus are also tetrahedrally disposed, are capable in principle of revealing sterochemical information about events at the active site of enzymes that transform such substrates. Nucleotidyl transferases are a group of enzymes which in general selectively use one of the diastereoisomers of a nucleoside 5'(1-thiotriphosphate), such as isomers A and B of adenosine 5'(1-thiotriphosphate), designated ATP alpha S-A and ATP alpha S-B, and allow investigation of the stereochemical course of nucleotidyl transfer. We have developed a simple method based on 31P nuclear magnetic resonance spectroscopy for determining the stereochemical course of these reactions, and using this method show here that the nucleotidyl transfer step in two aminoacyl-tRNA synthetases from Escherichia coli occurs with inversion of configuration at phosphorus. These observations greatly constrain the mechanistic possibilities for these enzymes, and are interpreted most simply as a direct 'in line' transfer from ATP to the amino acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call