Abstract
The Steinberg tensor product theorem is a fundamental result in the modular representation theory of reductive algebraic groups. It describes any finite-dimensional simple module of highest weight λ over such a group as the tensor product of Frobenius twists of simple modules with highest weights the weights appearing in a p-adic decomposition of λ, thereby reducing the character problem to a finite collection of weights. In recent years this theorem has been extended to various quasi-reductive supergroup schemes. In this paper, we prove the analogous result for the general linear group scheme GL(X) for any object X in the Verlinde category Verp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.