Abstract
In the course of both pre-operational testing and power operation of commercial nuclear power plants, relatively large amplitude transient vibrations of steam piping systems have been experienced with damage to the piping supports in at least one recent case. These transient vibrations result from ‘steamhammer’ or dynamic shock loading induced by pressure and momentum transient conditions generated in the piping by sudden changes to the flow conditions, such as are produced by sudden valve opening or closure. In particular, vibrations have been experienced in by-pass and discharge lines as a result of relief valve discharge, and in main steam lines as a result of sudden main stop valve closure. Piping in both BWR and PWR reactor systems has been found to be susceptible to these conditions. This paper is concerned with the evaluation of the pressure and momentum transients resulting from sudden valve operation, and the determination of the dynamic response of the piping to the induced transient loading. The characteristics of the transient conditions existing immediately following both sudden valve opening and closure as encountered in BWR and PWR plants are discussed. The procedures used to calculate the transient time history functions are outlined. The derivation of the loading induced in the piping by the pressure and momentum transients is discussed and the determination of the dynamic response of the piping is presented. The procedures described in the paper are illustrated by actual examples from BWR and PWR plants, and the significance of steamhammer effects relative to other loading conditions is discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have