Abstract

The steady-state degree of a chemical reaction network is the number of complex steady-states, which is a measure of the algebraic complexity of solving the steady-state system. In general, the steady-state degree may be difficult to compute. Here, we give an upper bound to the steady-state degree of a reaction network by utilizing the underlying polyhedral geometry associated with the corresponding polynomial system. We focus on three case studies of infinite families of networks, each generated by joining smaller networks to create larger ones. For each family, we give a formula for the steady-state degree and the mixed volume of the corresponding polynomial system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.