Abstract
We provide a new algebraic solution procedure for the global positioning problem in n dimensions using m satellites. We also give a geometric characterization of the situations in which the problem does not have a unique solution. This characterization shows that such cases can happen in any dimension and with any number of satellites, leading to counterexamples to some open conjectures. We fill a gap in the literature by giving a proof for the long-held belief that when m≥n+2, the solution is unique for almost all user positions. Even better, when m≥2n+2, almost all satellite configurations will guarantee a unique solution for all user positions. Our uniqueness results provide a basis for predicting the behavior of numerical solutions, as ill-conditioning is expected near the threshold between areas of nonuniqueness and uniqueness. Some of our results are obtained using tools from algebraic geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.