Abstract

Rapid environmental change, natural resource overconsumption and increasing concerns about ecological sustainability have led to the development of 'Essential Variables' (EVs). EVs are harmonized data products to inform policy and to enable effective management of natural resources by monitoring global changes. Recent years have seen the instigation of new EVs beyond those established for climate, oceans and biodiversity (ECVs, EOVs and EBVs), including Essential Geodiversity Variables (EGVs). EGVs aim to consistently quantify and monitor heterogeneity of Earth-surface and subsurface abiotic features, including geology, geomorphology, hydrology and pedology. Here we assess the status and future development of EGVs to better incorporate geodiversity into policy and sustainable management of natural resources. Getting EGVs operational requires better consensus on defining geodiversity, investments into a governance structure and open platform for curating the development of EGVs, advances in harmonizing in situ measurements and linking heterogeneous databases, and development of open and accessible computational workflows for global digital mapping using machine-learning techniques. Cross-disciplinary collaboration and partnerships with governmental and private organizations are needed to ensure the successful development and uptake of EGVs across science and policy. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call