Abstract

ABSTRACT The fields of statistical physics and single-cell genomics have traditionally evolved independently, each contributing unique insights to their respective domains. However, recent advances have unveiled intriguing parallels between these seemingly disparate disciplines. This paper delves into the remarkable similarities underlying the fundamental principles governing both systems, shedding light on their shared mathematical frameworks, information processing dynamics and emergent behaviours. We explore how energy landscapes in statistical physics correspond to gene expression landscapes, and how the study of disordered phenomena may shed light on the cellular heterogeneity observed in gene expression profiles. Some parallels between phase transitions and critical transitions in cellular differentiation processes are discussed. Emergent behaviours and collective phenomena, central to both fields, offer opportunities for cross-disciplinary insights. By examining these similarities, we can potentially transfer analytical tools and methodologies between these domains. In summary, this paper underscores some unexpected yet profound parallels between statistical physics and single-cell genomics. By embracing the shared mathematical and conceptual frameworks, researchers can unlock new avenues for discovery, enriching our understanding of complex systems ranging from the microscopic world of molecules to the intricate processes governing cellular behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call