Abstract

Introduction. The defeat of motor and sensory conductive structures, which ultimately leads to the development of demyelination processes and, as a consequence, the formation of polyneuropathic syndrome is natural under the influence of industrial vibrations. Exposure to vibration, along with other harmful working conditions, can potentiate the development of metabolic syndrome, which can lead to the development of diabetes, which is one of the most common causes of damage to the peripheral nervous system. Based on the above, it seems relevant to give a comprehensive assessment of the state of peripheral nerves and afferent conductive structures in workers exposed in their professional activities combined effect of local and general vibration, and patients with vibration disease, burdened with diabetes. Material and methods. 114 people were examined in clinical conditions. The observed cases included 50 with vibration disease (WB) associated with exposure to local and General vibration (group 1), the second group - 29 people with WB, burdened with type 2 diabetes. The control group (group 3) consisted of 35 conditionally healthy men, representative age (52.0±6.4 years) without contact with harmful factors of production. Results. In patients of group 1, changes were observed in increasing the time of postsynaptic activation of the posterior horns of the spinal cord and activation of neurons of the somatosensory zone of the cerebral cortex. In patients of group 2, changes in the state of the central afferent pathways were more pronounced, shown in increasing the time of the excitation wave from the cervical thickening to the thalamic nuclei, as well as violations in the state of the conductive structures in the thalamic region. Analysis of the peripheral nerves in group 1 patients revealed changes in demyelinating lesions of the motor and sensory components of the tibial nerve and changes in the speed indices of the nerves of the upper extremities. The examined 2 groups had similar disorders, there was a statistically significant decrease in the speed of sensory axons of the lower extremities. conclusion. It was found that the combined effect of vibration and diabetes mellitus leads to aggravation of the demyelination processes of both sensory and motor axons of peripheral nerves in patients. There is a statistically significant decrease in the amplitude of the M-response on the lower extremities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call