Abstract

The rheological properties of a carboxymethylated (D.S. ≈ 0.1) nanofibrillated cellulose (NFC) were investigated at different solid contents. The critical overlap concentration was determined to be in the range between 0.04 and 0.07 % (w/w) using shear stress versus shear rate measurements. From the critical overlap concentration using the simple Mason excluded volume formalism, the apparent aspect ratio was estimated to be 75 [at a critical overlap concentration of 0.04 % (w/w)]. The aspect ratio of the NFC system was also estimated by using the Einstein–Simha equation together with the intrinsic viscosity value of the system (corrected for the electroviscous effects). The obtained value was found to be around 80, which is in good agreement with the value obtained from the excluded volume calculation. Further, by combining oscillatory measurements and the equation of Shankar et al. the apparent fibril length was determined to be 4 µm. As the production of NFC through homogenization occurs at concentrations far above the critical overlap concentration an NFC-gel is constituted by a severely entangled structure. The disentanglement of the fibrils is therefore difficult and the employed dilution method was found not to lead to fully liberated nanofibrils, which was also indicated by atomic force microscopy-imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call