Abstract
Whether the integrated control measures are applied or not depends not only on the current density of pest population, but also on its current growth rate, and this undoubtedly brings challenges and new ideas to the state control measures that only rely on the pest density. To address this, utilizing the tactics of IPM, we constructed a Lotka‐Volterra predator‐prey system with action threshold depending on the pest density and its changing rate and examined its dynamical behavior. We present new criteria guaranteeing the existence, uniqueness, and global stability of periodic solutions. With the help of Lambert W function, the Poincaré map is constructed for the phase set, which can help us to provide the satisfactory conditions for the existence and stability of the semitrivial periodic solution and interior order‐1 periodic solutions. Furthermore, the existence of order‐2 and nonexistence of order‐k(k ≥ 3) periodic solutions are discussed. The idea of action threshold depending on the pest density and its changing rate is more general and can generate new remarkable directions as well compared with those represented in earlier studies. The analytical techniques developed in this paper can play a significant role in analyzing the impulsive models with complex phase set or impulsive set.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have