Abstract

We reassess the applicability of the Toomre criterion in galactic discs and we study the local star formation law in 16 disc galaxies for which abundance gradients are published. The data we use consist of stellar light profiles, atomic and molecular gas (deduced from CO with a metallicity-dependent conversion factor), star formation rates (from Ha emissivities), metal-licities, dispersion velocities and rotation curves. We show that the Toomre criterion applies successfully to the case of the Milky Way disc, but it has limited success with the data of our sample; depending on whether or not the stellar component is included in the stability analysis, we find average values for the threshold ratio of the gas surface density to the critical surface density in the range 0.5-0.7. We also test various star formation laws proposed in the literature, i.e. either the simple Schmidt law or modifications of it, that take into account dynamical factors. We find only small differences among them as far as the overall fit to our data is concerned; in particular, we find that all three star formation laws (with parameters derived from the fits to our data) match observations in the Milky Way disc particularly well. In all cases we find that the exponent n of our best-fitting star formation rate has slightly higher values than in other recent works and we suggest several reasons that may cause that discrepancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call