Abstract
The notion of the star chromatic number of a graph is a generalization of the chromatic number. In this paper, we calculate the star chromatic numbers of three infinite families of planar graphs. The first two families are derived from a 3-or 5-wheel by subdivisions, their star chromatic numbers being 2+2/(2n + 1), 2+3/(3n + 1), and 2+3(3n−1), respectively. The third family of planar graphs are derived from n odd wheels by Hajos construction with star chromatic numbers 3 + 1/n, which is a generalization of one result of Gao et al.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have