Abstract

Methicillin-resistant coagulase-negative staphylococci is responsible for hospital and community-acquired infections. This study aimed to investigate the antibiotic-resistance patterns, antibiotic-resistance genes, namely, ermA, ermB, ermC, blaZ, msrA, tetK, tetM, mup, and vanA, biofilm formation, and prevalence of different SCCmec types among the Staphylococcus cohniistrains isolated from clinical samples in Tehran, Iran. In this study,S. cohniiisolates were screened from the clinical samples from March 2012 to February 2013 in Tehran, Iran.Antimicrobial susceptibility test and inducible clindamycin resistance were evaluated by disc diffusion method, andresistance genes were examined using Polymerase Chain Reaction (PCR) assays. Then, biofilm formation assay was analyzed by Microtiter-plate test to detect the icaA and icaDgenes. The SCCmec and the Arginine Catabolite Mobile Element (ACME) typing were performed using the PCRmethod. FromtwentyS. cohnii, all isolates were resistant to cefoxitin. 95% of the S. cohnii was defined as multidrug resistance (MDR)strains. The ermB, ermC, and vanA genes were not detected in any isolates; however, the blaZ gene had the highest frequency.95% of the S. cohnii isolates produced biofilm. Also, 4 SCCmec types, including V, IV, III+ (C2), VIII+ (AB1), were identified. Therefore, the majority of SCCmec were untypable. Based on the ACME typing, arcA and opp3 genes were positive in 13 (65%) and 1 (5%) isolates, respectively. Due to the high antimicrobial resistance and the spread of untypableSCCmecamong the isolates studied, the control and treatment of methicillin-resistantS. cohnii in hospitals and public health centers is a significant concern.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.