Abstract

AbstractMixed FeIIFeIII hydroxides, commonly referred to as ‘green rusts’ (GRs), are important reactive phases in both man-made and natural geochemical systems. Determinations of the standard Gibbs energy of formation of GRs are needed to understand and predict the occurrence and possible reactions of GRs in these systems. Slow acid titration of crystalline green rust sulfate (GRSO4\$\end{document}) with the formation of magnetite was used as a novel method to determine the standard Gibbs energy of formation of GRSO4\$\end{document}, ΔfGo(GRSO4)\$\end{document}. Aqueous suspensions of GRSO4\$\end{document}, with pH slightly >8, were titrated slowly with 1 M H2SO4 until pH = 3 under strict anoxic conditions. Powder X-ray diffraction and Mössbauer analysis revealed that magnetite was the only solid phase formed during the initial part of the titration, where the equilibrium pH was maintained above 7.0. The ratio of Fe2+ release to consumption of protons confirmed the stoichiometry of dissolution of GRSO4\$\end{document} and the formation of magnetite at equilibrium conditions. The estimate of the absolute value of ΔfGo(GRSO4)\$\end{document} was −3819.43±6.44 kJ mol−1 + y × [ΔfGo(H2O(1))], where y is the number of interlayer water molecules per formula unit. The logarithm of the solubility product, log Ksp, was estimated to be −139.2±4.8 and is invariable with y. Using the new value for ΔfGo(GRSO4)\$\end{document}, the reduction potentials of several GRSO4\$\end{document}-Fe oxide couples were evaluated, with the GRSO4\$\end{document}-magnetite half cell showing the smallest redox potential at pH 7 and free ion activities of 10−3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.