Abstract

In order to verify Fe control by solution - mineral equilibria, soil solutions were sampled in hydromorphic soils on granites and shales, where the occurrence of Green Rusts had been demonstrated by Mössbauer and Raman spectroscopies. Eh and pH were measured in situ, and Fe(II) analyzed by colorimetry. Ionic Activity Products were computed from aqueous Fe(II) rather than total Fe in an attempt to avoid overestimation by including colloidal particles. Solid phases considered are Fe(II) and Fe(III) hydroxides and oxides, and the Green Rusts whose general formula is [FeII1−xFeIIIx(OH)2]+x· [x/z A−z]−x, where compensating interlayer anions, A−, can be Cl−, SO42−, CO32− or OH−, and where x ranges a priori from 0 to 1. In large ranges of variation of pH, pe and Fe(II) concentration, soil solutions are (i) oversaturated with respect to Fe(III) oxides; (ii) undersaturated with respect to Fe(II) oxides, chloride-, sulphate- and carbonate-Green Rusts; (iii) in equilibrium with hydroxy-Green Rusts, i.e., Fe(II)-Fe(III) mixed hydroxides. The ratios, x = Fe(III)/Fet, derived from the best fits for equilibrium between minerals and soil solutions are 1/3, 1/2 and 2/3, depending on the sampling site, and are in every case identical to the same ratios directly measured by Mössbauer spectroscopy. This implies reversible equilibrium between Green Rust and solution. Solubility products are proposed for the various hydroxy-Green Rusts as follows: log Ksp = 28.2 ± 0.8 for the reaction Fe3(OH)7 + e− + 7 H+ = 3 Fe2+ + 7 H2O; log Ksp = 25.4 ± 0.7 for the reaction Fe2(OH)5 + e− + 5 H+ = 2 Fe2+ + 5 H2O; log Ksp = 45.8 ± 0.9 for the reaction Fe3(OH)8 + 2e− + 8 H+ = 3 Fe2+ + 8 H2O at an average temperature of 9 ± 1°C, and 1 atm. pressure. Tentative values for the Gibbs free energies of formation of hydroxy-Green Rusts obtained are: ΔfG° (Fe3(OH)7, cr, 282.15 K) = −1799.7 ± 6 kJ mol−1, ΔfG° (Fe2(OH)5, cr, 282.15 K) = −1244.1 ± 6 kJ mol−1 and ΔfG° (Fe3(OH)8, cr, 282.15 K) = −1944.3 ± 6 kJ mol−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call