Abstract

The standard free energy of surfactant adsorption represents the work of transfer of a surfactant molecule from the bulk of solution to an infinitely diluted adsorption layer. This quantity can be determined by non-linear fits of surface-tension isotherms with the help of a theoretical model of adsorption. Here, the models of Frumkin, van der Waals and Helfand-Frisch-Lebowitz are applied, and the results are compared. Irrespective of the differences between these models, they give close values for the standard free energy. The results from the theoretical approach are compared with those from the most popular empirical approach. The latter gives values of the standard free energy, which are considerably different from the respective true values, with c.a. 10 kJ/mol for nonionic surfactants, and with c.a. 20 kJ/mol for ionic surfactants. These differences are due to contributions from interactions between the molecules in dense adsorption layers. It is concluded that the true values of the standard free energy can be determined with the help of an appropriate theoretical model. For the processed sets of data, the van der Waals model gives the best results, especially for the determination of the standard adsorption enthalpy and entropy from the temperature dependence of surface tension. The results can be useful for the development of a unified approach to the thermodynamic characterization of surfactants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call