Abstract

Despite the significant interest of researchers, icing of aircraft, vehicles, ships, and equipment of offshore oil structures remains to be an urgent problem. This paper considers the factors that promote a decrease in the strength of the contact between ice and surfaces under an applied shear load. The main attention is focused on studying the influence of the rate of shear loading on the fracture of the interfacial contact between ice and superhydrophobic coatings. The strength of the adhesive contact under the conditions of controlled variations in the applied load is measured using a technique based on the detachment of ice from a surface under the influence of centrifugal force. The study is carried out for large ensembles of samples in the temperature range from −5 to −20°C, thereby making it possible to evaluate the influence of the quasi-liquid layer and the Rehbinder effect on a decrease in the shear adhesive strength. The results obtained indicate that the contact between ice and a superhydrophobic coating is fractured through a mixed viscous–brittle mechanism. In this case, a decrease in temperature or an increase in the loading rate causes a transition from the viscous to the brittle fracture. These results indicate a potential acceleration of ice shedding with an increase in the growth rate of the shear stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.