Abstract

Calculating opacities for a wide range of plasma conditions (i.e. temperature, density, element) requires detailed knowledge of the plasma configuration space and electronic structure. For plasmas composed of heavier elements, relativistic effects are important in both the electronic structure and the details of opacity spectra. We extend our previously described superconfiguration and super transition array capabilities (Gill et al., 2023) to include a fully relativistic formalism. The use of hybrid bound-continuum supershells in our superconfigurations demonstrates the importance of a consistent treatment of bound and continuum electrons in dense plasma opacities, and we expand the discussion of these consequences to include issues associated with equation of state and electron correlations between bound and continuum electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.