Abstract
The large virulence plasmid pMYSH6000 of Shigella flexneri contains a determinant that is highly effective in stabilizing otherwise unstable plasmids in Escherichia coli. Expression of two small contiguous genes, mvpA and mvpT (formerly termed STBORF1 and STBORF2), was shown to be sufficient for stability. Mutations in mvpT abolished plasmid stability, and plasmids expressing only mvpT killed the cells unless mvpA was supplied from a separate plasmid or from the host chromosome. When replication of a plasmid carrying the minimal mvp region was blocked, growth of the culture stopped after a short lag and virtually all of the surviving cells retained the plasmid. Thus, the mvp system stabilizes by a highly efficient postsegregational killing (PSK) mechanism, with mvpT encoding a cell toxin and mvpA encoding an antidote. The regions that surround the mvp genes in their original context have an inhibitory effect that attenuates plasmid stabilization and PSK. The region encompassing the mvp genes also appears to contain an additional element that can aid propagation of a pSC101-based plasmid under conditions where replication initiation is marginal. However, this appears to be a relatively nonspecific effect of DNA insertion into the plasmid vector.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have