Abstract
The semi-geostrophic equations are used widely in the modelling of large-scale atmospheric flows. In this note, we prove the global existence of weak solutions of the incompressible semi-geostrophic equations, in geostrophic coordinates, in a three-dimensional domain with a free upper boundary. The proof, based on an energy minimization argument originally inspired by the Stability Principle as studied by Cullen, Purser and others, uses optimal transport techniques as well as the analysis of Hamiltonian ODEs in spaces of probability measures as studied by Ambrosio and Gangbo. We also give a general formulation of the Stability Principle in a rigorous mathematical framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.