Abstract
Thallium bromide (TlBr) is a promising semiconductor detector material due to its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm 3) and wide band gap (2.68 eV). Current TlBr detectors suffer from polarization, which causes performance degradation over time when high voltage is applied. A 4.6-mm thick TlBr detector with pixellated anodes made by Radiation Monitoring Devices Inc. was used in the experiments. The detector has a planar cathode and nine anode pixels surrounded by a guard ring. The pixel pitch is 1.0-mm. Digital pulse waveforms of preamplifier outputs were recorded using a multi-channel GaGe PCI digitizer board for pulse shaping. Several experiments were carried out at −20 °C while the detector was under bias for over a month. No polarization effect was observed and the detector's spectroscopic performance improved over time. Energy resolution of 1.5% FWHM at 662 keV has been measured without depth correction at −2000 V cathode bias. Average electron mobility-lifetime of (5.7±0.8) ×10 −3 cm 2/V has been measured from four anode pixels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.